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The recommended value of the Debye-Waller thermal parameter, B, for 22 cubic elements, based 
on experimental measurements using X-ray, neutron, and y-ray diffraction as well as high-voltage 
electron diffraction, has recently been published. Using these data, interesting correlations can be 
made of the parameter B with thermal, mechanical and defect properties of these cubic elements. 
These results show an evident relationship between the microscopic and bulk properties. 

1. In t roduct ion 
The temperature dependence of the intensity of radi- 
ation (X-rays, neutrons, y-rays, and electrons) diffrac- 
ted from a crystal has been dealt with extensively 
using the Debye Waller theory [1, 2]. The effect of the 
temperature is to reduce this intensity by an exponen- 
tial factor known as the Debye-Waller factor, 
exp(-2Bsin20/X2),  where 0 is the Bragg angle at 
which the diffracted intensity has been measured and 
2 is the wavelength of the radiation. The quantity B is 
usually referred as the Debye Waller thermal para- 
meter or the temperature factor, and is related to 
the Debye temperature, O, of the solid through the 
relation 

B = (6h2/mk)(T/O2)[dp(x) + x/43 (1) 

where x = O/T and the remaining symbols have their 
usual meanings as described in [1]. For a monatomic 
cubic crystal for which the vibrations are isotropic, the 
mean square amplitude of atomic vibrations perpen- 
dicular to the diffracting plane, (u2),  is related to 
B via the relation 

B = 8~2~u 2) (2) 

The quantity B is a fundamental parameter of a solid 
at a given temperature. Apart from the fact that its 
temperature dependence leads to useful information 
on the atomic behaviour of solid materials [3], 
a knowledge of its value at room temperature is im- 
portant, for example, in the design of the moderators 
of nuclear reactors. 

Interrelation between different properties of mater- 
ials are useful for the understanding of physical prop- 
erties of the materials, as well as for the prediction of 
unknown parameters where no experimental data are 
available. A large number of papers has been pub- 
lished where quantities such as melting point, thermal 
expansion coefficient, Debye temperature, moduli of 
elasticity, defect formation and migration energies, 
cohesive energy, etc., have been interrelated [-4 12]. 

In the present investigations using recently pub- 
lished data of temperature factors B of the cubic ele- 
ments [13], we have found interesting correlations of 
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this microscopic parameter with several macroscopic 
or bulk properties such as melting point, coefficient of 
thermal expansion, mechanical properties, and crystal 
defect energies. Correlations with other quantities, 
such as cohesive energy, heat of fusion and density, 
etc., have also been investigated. 

2. Results and discussion 
2.1. General properties 
2. 1.1, Cohesive energy 
The cohesive energy, Uc, is defined as the energy per 
atom required to decompose a solid into free atoms. In 
Fig. 1 the parameter B is plotted against the cohesive 
energy Uc. The least square fit to the plot yielded 
a relation 

B = 7.3/U~ .76 (3) 

with a linear correlation coefficient of 0.97. However, 
when B is plotted against a2/Uc where a is the lattice 
parameter (Fig. 2), we get two different straight lines 
depending upon the type of the crystal structure of the 
element. These straight lines can be described by the 
following relations 

B = O.15a2/Uc for fcc metals (4a) 

B = 0.27a2/Uc for bcc  metals (4b) 

Similar relations hold between the temperature factors 
and the heat of fusion which is the energy per atom 
required to melt the solid (Figs 3 and 4). Both the 
cohesive energy and heat of fusion data is from 
Gschneidner [14]. 

2.1.2. Density 
The plot of B versus density, P, is shown in Fig. 5. The 
density data are taken from Barrett and Massalski 
[15]. The temperature factor, B, decreases with in- 
creasing density. This is to be expected as higher 
density means tighter interatomic bonding and hence 
lower values of the temperature factors. The two alkali 
metals, potassium and sodium, and lead show some 
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deviations from the normal straight-line behaviour 
which is best described by the relation 

B = 3.2p o.83 (5) 

2.2.  T h e r m a l  p r o p e r t i e s  
2.2. 1. Mel t ing  temperature 
Melting point is an important but not too well-under- 
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stood property of materials. Several attempts have 
been made to correlate the melting point with other 
physical properties of the materials. In 1879, Carnelley 
[16] pointed out that the melting point increases with 
increase in the bond strength of the element. Since 
then, numerous attempts have been made to deduce 
simple rules relating melting point and other physical 
properties of solids [4, 10, 17-26]. 
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Fig. 6 illustrates the inverse relationship between 
B and the melting point, Tm. The values of the lattice 
constants and the melting point data are from Barrett 
and Massalski [15] and Ashcroft and Mermin [27]. 
This behaviour is expected, because the melting point 
is a function of cohesive energy and hence the bond 
strength which reflects the magnitude of the forces 
between the atoms. The relation between B and Tm, as 

obtained from the least square fit, is 

B = 59036/r  T M  (6) 

If B is plotted against aZ/Tm (Fig. 7), once again we 
observe a similar trend to that observed in the case of 
cohesive energy and heat of fusion, i.e. two different 
straight lines are obtained. These lines correspond to 
metals crystallizing in f cc  and b cc structures. The 

1 5 9 7  



2 lO 

i 

101 f 

i ,_ 
I 

- l 
a~ F- 

1~ i 
[ 

10-1 ~_ 
10-1 

I I 

~K 

NaB 

L i I I I 

10 o 

pb ~ 

~ T a  g~ ~Au 

~ I r  

R h  ~ ~ ~ C r  ~ " - -  ~ P t  

Mo 

W 
I i I I I [ I I i I 

101 P (q cm -3) 

Figure 5 Temperature factor versus density, 9- ([5]) Observed, ( - - )  calculated. 

I I I I , I 

102 

101 

A 
r  

v 

I i 

~K 

eNa 

~g ~N b P d ~  
N-ig~ F e ~  Ir~ Ta~ 

~ W  

I I i I I I I I _ i  

10 5 

r m (K) 
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relationship between B, the lattice constant, a, and the 
melting point, T~, is 

B = 6ia2/Tm (7) 

where 61 are constants and i = 1, 2 represents fc c and 
b cc metals. The constants and the corresponding 
standard deviations as computed numerically with 
least square fit are 67(2) and 283(1) for f cc  and b c c  
metals, respectively. 
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2.2.2. Coefficient of thermal expansion 
The coefficient of thermal expansion of solids is an 
important fundamental parameter particularly in 
metals and is crucial in designing a variety of useful 
devices which are subjected to severe variations of 
temperature. It is, therefore, interesting to explore the 
properties which appear to be correlated with the 
coefficient of thermal expansion. Several useful rela- 
tions exist relating ~ to various other physical proper- 
ties. Hanneman and Gatos [28] showed that a linear 
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relation exists between the thermal expansion coeffi- 
cient, ~, and compressibility of the materials. Plendl 
[29] showed that ~ is inversely proportional to the 
atomic coordination valence and directly propor- 
tional to atomic coordination number of  the metallic 
elements, whereas Van Uitert [20] pointed out that 
for metals crystallizing in fc c, b c c or hexagonal close- 
packed metals, the product =Tin is constant. 

Konyaeva [12] has pointed out that the thermal 
expansion coefficient decreases as the binding or co- 

hesive energy of the element increases. As the temper- 
ature factor is also inversely proportional to the co- 
hesive energy, B and ~ are therefore directly related, as 
shown in Fig. 8. The least square fit to the data yields 
the following relation between B and 

B = 196 x 10 -3  ~1.25 (8) 

with a linear correlation factor of 0.93. At this point it 
is important to point out that experimentally deter- 
mined ~ values show considerable fluctuations. This 
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may partly be due to different impurity contents of the 
various samples and partly due to different methods of 
determining the data. 

As Van Uitert pointed out that 

Tm = constant/• (9) 

using Equations 8 and 10 we get 

B = constant a/ ~ (10) 

where the value of the constant depends upon the 
structure of the element. The plot of B versus a 2 ~ once 
again shows two different straight lines (Fig. 9). The 
values of the constants obtained by linear regressions 
are 3.85 x 10 .3 and 6.25 x 10 .3 for the f cc  and b c c  
metals, respectively. 

2.3. Mechanical properties 
The elastic properties of interest are the elastic con- 
stants, C l l ,  C12, C44, Young's modulus Y, bulk 
modulus K and its reciprocal compressibility, • shear 
modulus, G, Poisson's ratio, v, and the hardness, H of 
the material. 

As the three moduli of elasticity and the Poisson's 
ratio are related through the relations 

Y = 2G(1 + v )  (11) 

and 

K = Y/3(1 - 2v) (12) 

for an isotropic material which is free from texture, 
there are only two independent parameters, i.e. 
Young's and bulk modulus. As the compressibility is 
the reciprocal of the bulk modulus, we will consider 
only the Young's modulus, Y, and the compress- 
ibility, • 

2.3.1. Compressibility 
The volume compressibility, • and its reciprocal the 
bulk modulus, K, provide a convenient measure of the 
decrease in volume with pressure. Compressibility has 
been related to many physical properties of solids, 
such as melting point [30], energy of repulsion [31], 
atomic volume [32] and coefficient of thermal expan- 
sion [28], etc. Materials with large interatomic dis- 
tances are generally more compressible than the more 
tightly bound materials; hence the compressibility de- 
creases with increasing atomic radius [33]. Bulk 
modulus also depends on the valency of the metal 
again because of the stronger binding. The materials 
with higher densities have higher bulk modulus be- 
cause the short-range forces make it increasingly diffi- 
cult to compress the solid as the atoms move together. 
As the elements in which the atoms are tightly bonded 
have smaller B values, the temperature factor, B, and 
the compressibility, • are directly related (Fig. 10). 

2.3.2. Young's modulus 
The Young's modulus, Y, has been related to the 
Debye temperature and monovacancy formation en- 
ergy [9, 34]. The dependence of the Young's modulus 
on the specific heat of the solid was studied by Buch 
[35]. In Fig. 11, we have plotted Y versus the tem- 
perature factor B. The Young's modulus and the 
compressibility data are from the compilation of 
Gschneidner [14]. The agreement between the theor- 
etical estimates and the experimentally observed 
values is seen to be very good. 

2.3.3. Hardness 
The hardness of a material is not a simple property 
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and complex  stresses are involved dur ing  its testing. 
The hardness  of cubic elements  under  discussion 
seems to be well cor re la ted  with B (Fig. 12). The 
elements  having larger  mean  square ampl i tude  of 
a tomic  v ibra t ions  have low hardness,  while the ele- 
ments  with smal ler  values of B have high hardness  
values. Once  again  this is the consequence  of the 
s t rong in te ra tomic  forces between the atoms.  

2 . 3 . 4 .  E las t i c  c o n s t a n t s  

The elastic constants Cl l ,  C12 and C44 are the stress 
componen t s  which in a specific di rect ion de te rmine  
the s t ra in  p roduced  in that  direct ion.  The elastic con- 
s tants  C 11, C 12 and  C44 show good  cor re la t ion  when 
p lo t ted  against  B (Figs 13, 14 and 15). Elastic con- 
stants da t a  were taken  from Brandes  [36]. The values 
of the cons tan ts  and  the slopes as ob ta ined  by l inear  
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regression for the Young's modulus, compressibility, 
hardness and the three elastic constants, are sum- 
marized in Table I. 

2.4. Crystal defect  propert ies 
Vacancies play an important  role for diffusion of 
atoms in crystalline solids. In metals, as in the other 
solids, vacancies are created by the thermal excitation, 
because as the atoms vibrate around their equilibrium 
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positions, some acquire enough energy to leave the 
site completely. Thus the formation energy, Qv, is the 
energy required to produce a single vacancy. 

The vacancy formation energy and activation en- 
ergy for self diffusion are all dependent on the bonding 
strength of the constituent atoms. Gorecki [37] has 
collected considerable experimental data and has 
shown that Qv = Uo/3, where Uo is the bonding en- 
ergy per atom. Sherby and Simnad [38] pointed out 
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that the activation energy for self diffusion is the 
function of the valency of the element. Tiwari and 
Patil [39] have shown that vacancy parameters are 
linear functions of valence bond strength (cohesive 
energy/most prominent valency of the element). 
A number of empirical relations have been suggested 
between the vacancy parameters and various physical 
properties such as melting point, coefficient of thermal 
expansion, Young's modulus, bulk modulus, Fermi 
energy, nearest neighbour interactions, and the Debye 
temperature I-6; 7, 19, 25, 40-44]. 

Plots of vacancy formation energy, Qv, and activa- 
tion energy for self diffusion, Qd, versus B are shown in 
Figs 16 and 17. Values of vacancy formation energy as 
well as the activation energy for self diffusion are from 
Siegel [45], Nihoul [46], Koehler [47] and Kraftmak- 
her and Strelkov [48]. Once again no structure de- 
pendence was observed in these plots. However, plots 
of temperature factor versus a2/Qv and a2/Qd 
(Figs 18 and 19) show similar structure dependence, 
as was observed in the case of other properties. The 
structure dependence of these relations is due to the 
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fact that the number of bonds broken in the formation 
of a vacancy and the energy associated with their 
distortion at any point, are dependent on the crystal 
structure. Therefore, the nature of the bonding has 
a profound influence on the diffusion characteristics. 

2.5. Cor re la t ion  of  B wi th  the  Per iod ic  Tab le  
The B factors of the cubic elements reveal some inter- 
esting trends when viewed in relation to the Periodic 

Table. The adjacent triads of vanadium, niobium and 
tantalum, chromium, molybdenum and tungsten, ad- 
opt the b c c  type structure. The temperature factors 
decrease on descending the two groups, reflecting the 
increasing melting points and masses, but the origin of 
the reduction on passing from Group V to VI, e.g. 
vanadium to chromium is not clear. By contrast, the 
fcc  triads of niobium, palladium and platinum, and 
copper, silver and gold, show a different, albeit inter- 
nally consistent, trend which merits further scrutiny. 
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The B factor  of i r id ium is notable ,  being larger  than  
that  of rhodium;  this m a y  stem from the fact tha t  only  
one de t e rmina t ion  has been repor ted  for each of these 
elements.  The  most  s t r ik ing a n o m a l y  in the list, how-  
ever, is lead with a value tha t  is subs tan t ia l ly  larger  
than  tha t  of any  of the o ther  e lements  in the fifth 

period.  There  can be little doub t  that  the value is 
incorrect ,  because all the de te rmina t ions  are in good  
accord  and the Debye  t empera tu re  (84 K) is in line 
with values ob ta ined  by o ther  authors .  One possibi l i ty  
is that  the high value is re la ted to the anoma lous ly  
larger  in te ra tomic  separa t ion  in metal l ic  lead, but  the 
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T A B L E  I Values of constants C, and slopes, S, as obtained from 
the least square fit to the plots of Debye-Waller  parameter versus 
mechanical parameter. These plots are described by straight lines 
In B In C + S i n  P, where P is the respective mechanical para- 
meter 

Mechanical Slope, Y intercept, Linear 
parameter S In C correlation 

coefficient 

Young's modulus,  Y - 0.84(4) - 0.41(6) - 0.97 
Compressiblity, • 0.87(4) - 2.34(11) 0.98 
Cl l  - 0.89(7) 1.77(11) - 0.98 
Clz - 0.89(8) 1.51(19) - 0.94 
C44 - 0.89(9) 0.99(14) - 0.95 
Hardness, H - 0.48(6) 1.24(23) - 0.91 

question is open for investigation. It is not surprising, 
however, that lead appears to be out of line with some 
of the correlation plots. 

3. Conclusion 
The correlation of Debye-Waller parameter, B, with 
the physical properties of materials has been found to 
be systematic in the properties described above. These 
results reveal an important aspect, that the micro- 
scopic properties, such as the B factor, can furnish 
information on the macroscopic or bulk properties of 
these materials. This connection between the micro 
and macro aspects of materials sets new trends in the 
interpretation of behaviour of the materials. 
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